332 research outputs found

    A Morphological Associative Memory Employing A Stored Pattern Independent Kernel Image and Its Hardware Model

    Get PDF
    An associative memory provides a convenient way for pattern retrieval and restoration, which has an important role for handling data distorted with noise. As an effective associative memory, we paid attention to a morphological associative memory (MAM) proposed by Ritter. The model is superior to ordinary associative memory models in terms of calculation amount, memory capacity, and perfect recall rate. However, in general, the kernel design becomes difficult as the stored pattern increases because the kernel uses a part of each stored pattern. In this paper, we propose a stored pattern independent kernel design method for the MAM and design the MAM employing the proposed kernel design with a standard digital manner in parallel architecture for acceleration. We confirm the validity of the proposed kernel design method by auto- and hetero-association experiments and investigate the efficiency of the hardware acceleration. A high-speed operation (more than 150 times in comparison with software execution) is achieved in the custom hardware. The proposed model works as an intelligent pre-processor for the Brain-Inspired Systems (Brain-IS) working in real world

    Flow Properties and Heat Transfer of Drag-Reducing Surfactant Solutions

    Get PDF

    Comparison among Various Expressions of Complex Admittance for Quantum System in Contact with Heat Reservoir

    Full text link
    Relation among various expressions of the complex admittance for quantum systems in contact with heat reservoir is studied. Exact expressions of the complex admittance are derived in various types of formulations of equations of motion under contact with heat reservoir. Namely, the complex admittance is studied in the relaxation method and the external-field method. In the former method, the admittance is calculated using the Kubo formula for quantum systems in contact with heat reservoir in no external driving fields, while in the latter method the admittance is directly calculated from equations of motion with external driving terms. In each method, two types of equation of motions are considered, i.e., the time-convolution (TC) equation and time-convolutionless (TCL) equation. That is, the full of the four cases are studied. It is turned out that the expression of the complex admittance obtained by using the relaxation method with the TC equation exactly coincides with that obtained by using the external-field method with the TC equation, while other two methods give different forms. It is also explicitly demonstrated that all the expressions of the complex admittance coincide with each other in the lowest Born approximation for the systemreservoir interaction. The formulae necessary for the higher order expansions in powers of the system-reservoir interaction are derived, and also the expressions of the admittance in the n-th order approximation are given. To characterize the TC and TCL methods, we study the expressions of the admittances of two exactly solvable models. Each exact form of admittance is compared with the results of the two methods in the lowest Born approximation. It is found that depending on the model, either of TC and TCL would be the better method.Comment: 34pages, no figur

    Epidermal growth factor receptor mutation in combination with expression of MIG6 alters gefitinib sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidermal growth factor receptor (EGFR) signaling plays an important role in the regulation of cell proliferation, survival, metastasis, and invasion in various tumors. Earlier studies showed that the EGFR is frequently overexpressed in non-small-cell lung cancer (NSCLC) and EGFR mutations at specific amino acid residues in the kinase domain induce altered responsiveness to gefitinib, a small molecule EGFR tyrosine kinase inhibitor. However, the mechanism underlying the drug response modulated by EGFR mutation is still largely unknown. To elucidate drug response in EGFR signal transduction pathway in which complex dynamics of multiple molecules involved, a systematic approach is necessary. In this paper, we performed experimental and computational analyses to clarify the underlying mechanism of EGFR signaling and cell-specific gefitinib responsiveness in three H1299-derived NSCLC cell lines; H1299 wild type (H1299WT), H1299 with an overexpressed wild type EGFR (H1299EGFR-WT), and H1299 with an overexpressed mutant EGFR L858R (H1299L858R; gefitinib sensitive mutant).</p> <p>Results</p> <p>We predicted and experimentally verified that Mig6, which is a known negative regulator of EGFR and specifically expressed in H1299L858R cells, synergized with gefitinib to suppress cellular growth. Computational analyses indicated that this inhibitory effect is amplified at the phosphorylation/dephosphorylation steps of MEK and ERK.</p> <p>Conclusions</p> <p>Thus, we showed that L858R receptor mutation in combination with expression of its negative regulator, Mig6, alters signaling outcomes and results in variable drug sensitivity.</p

    Spontaneous complete necrosis of hepatocellular carcinoma caused by feeding vessel occlusion outside the tumour capsule

    Get PDF
    A 64-year-old man began treatment for chronic hepatitis C with peg-interferon and ribavirin. His hepatitis C virus ribonucleic acid (HCV-RNA) results turned negative. Just after the treatment, a computed tomography (CT) scan revealed a hypovascular mass in the segment 8. We performed a right hemihepatectomy as HCC. Upon macroscopic examination, the tumour was yellow and firm with a fibrous capsule. A wedge-shaped necrotic area was located at the top of an artery and a portal vein of segment 8. Necrosis was observed not only in the tumour but in the adjacent parenchyma. A histopathological examination showed that the tumour had been completely replaced by necrosis. This tumour was surrounded by capillary vessels and fed by several thick arteries, but organized thrombi were not detected. No viable cells were found. The histopathological diagnosis was a spontaneous complete necrosis of HCC caused by the occlusion of feeding vessels outside the capsule

    Ligand-Specific c-Fos Expression Emerges from the Spatiotemporal Control of ErbB Network Dynamics

    Get PDF
    SummaryActivation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) determines distinct cell-fate decisions, although signals propagate through shared pathways. Using mathematical modeling and experimental approaches, we unravel how HRG and EGF generate distinct, all-or-none responses of the phosphorylated transcription factor c-Fos. In the cytosol, EGF induces transient and HRG induces sustained ERK activation. In the nucleus, however, ERK activity and c-fos mRNA expression are transient for both ligands. Knockdown of dual-specificity phosphatases extends HRG-stimulated nuclear ERK activation, but not c-fos mRNA expression, implying the existence of a HRG-induced repressor of c-fos transcription. Further experiments confirmed that this repressor is mainly induced by HRG, but not EGF, and requires new protein synthesis. We show how a spatially distributed, signaling-transcription cascade robustly discriminates between transient and sustained ERK activities at the c-Fos system level. The proposed control mechanisms are general and operate in different cell types, stimulated by various ligands

    Manipulation of charge carrier flow in Bi₄NbO₈Cl nanoplate photocatalyst with metal loading

    Get PDF
    Separation of photoexcited charge carriers in semiconductors is important for efficient solar energy conversion and yet the control strategies and underlying mechanisms are not fully established. Although layered compounds have been widely studied as photocatalysts, spatial separation between oxidation and reduction reaction sites is a challenging issue due to the parallel flow of photoexcited carriers along the layers. Here we demonstrate orthogonal carrier flow in layered Bi₄NbO₈Cl by depositing a Rh cocatalyst at the edges of nanoplates, resulting in spatial charge separation and significant enhancement of the photocatalytic activity. Combined experimental and theoretical studies revealed that lighter photogenerated electrons, due to a greater in-plane dispersion of the conduction band (vs. valence band), can travel along the plane and are readily trapped by the cocatalyst, whereas the remaining holes hop perpendicular to the plane because of the anisotropic crystal geometry. Our results propose manipulating carrier flow via cocatalyst deposition to achieve desirable carrier dynamics for photocatalytic reactions in layered compounds

    Leucine imparts cardioprotective effects by enhancing mTOR activity and mitochondrial fusion in a myocardial ischemia/reperfusion injury murine model

    Get PDF
    Background: Coronary artery disease is a leading cause of morbidity and mortality among patients with diabetes. Previously, we demonstrated that branched-chain amino acids (BCAAs) showed cardioprotective effects against cardiac ischemia/reperfusion (I/R) injury. A recent study suggested that leucine (Leu), a BCAA, is a key amino acid involved in mammalian target of rapamycin (mTOR) activity and mitochondrial function. However, whether Leu has cardioprotective effects on diabetic hearts is unclear. In this study, we examined the preconditioning effect of Leu treatment on high-fat diet (HFD)-induced obese mouse which simulate prediabetic heart. Methods: In vivo mice models of I/R injury were divided into the following groups: control, mTOR+/−, and high-fat diet (HFD)-induced obese groups. Mice were randomly administered with Leu, the mTOR inhibitor rapamycin (Rap), or Leu with Rap. Isolated rat cardiomyocytes were subjected to simulated I/R injury. Biochemical and mitochondrial functional assays were performed to evaluate the changes in mTOR activity and mitochondrial dynamics caused by Leu treatment. Results: Leu-treated mice showed a significant reduction in infarct size when compared with the control group (34.8% ± 3.8% vs. 43.1% ± 2.4%, n = 7, p < 0.05), whereas Rap-treated mice did not show the protective effects of Leu. This preconditioning effect of Leu was attenuated in mTOR+/− mice. Additionally, Leu increased the percentage of fused mitochondria and the mitochondrial volume, and decreased the number of mitochondria per cell in isolated cardiomyocytes. In HFD-induced obese mice, Leu treatment significantly reduced infarct size (41.0% ± 1.1% vs. 51.0% ± 1.4%, n = 7, p < 0.05), which was not induced by ischemic preconditioning, and this effect was inhibited by Rap. Furthermore, we observed enhanced mTOR protein expression and mitochondrial fusion with decreased reactive oxygen species production with Leu treatment in HFD-induced obese mice, but not in mTOR+/− mice. Conclusions: Leu treatment improved the damage caused by myocardial I/R injury by promoting mTOR activity and mitochondrial fusion on prediabetic hearts in mice

    miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A

    Get PDF
    Breast cancer is a hormone-dependent cancer and usually treated with endocrine therapy using aromatase inhibitors or anti-estrogens such as tamoxifen. A majority of breast cancer, however, will often fail to respond to endocrine therapy. In the present study, we explored miRNAs associated with endocrine therapy resistance in breast cancer. High-throughput miRNA sequencing was performed using RNAs prepared from breast cancer MCF-7 cells and their derivative clones as endocrine therapy resistant cell models, including tamoxifen-resistant (TamR) and long-term estrogen-deprived (LTED) MCF-7 cells. Notably, miR-21 was the most abundantly expressed miRNA in MCF-7 cells and overexpressed in TamR and LTED cells. We found that miR-378a-3p expression was downregulated in TamR and LTED cells as well as in clinical breast cancer tissues. Additionally, lower expression levels of miR-378a-3p were associated with poor prognosis for tamoxifen-treated patients with breast cancer. GOLT1A was selected as one of the miR-378a-3p candidate target genes by in silico analysis. GOLT1A was overexpressed in breast cancer specimens and GOLT1A-specific siRNAs inhibited the growth of TamR cells. Low GOLT1A levels were correlated with better survival in patients with breast cancer. These results suggest that miR-378a-3p-dependent GOLT1A expression contributes to the mechanisms underlying breast cancer endocrine resistance

    Establishment of an experimental ferret ocular hypertension model for the analysis of central visual pathway damage

    Get PDF
    Glaucoma optic neuropathy (GON) is a condition where pathogenic intraocular pressure (IOP) results in axonal damage following retinal ganglion cell (RGC) death, and further results in secondary damage of the lateral geniculate nucleus (LGN). Therapeutic targets for glaucoma thus focus on both the LGN and RGC. However, the temporal and spatial patterns of degeneration and the mechanism of LGN damage have not been fully elucidated. Suitable and convenient ocular hypertension (OH) animal models with binocular vision comparable to that of monkeys are strongly needed. The ferret is relatively small mammal with binocular vision like humans - here we report on its suitability for investigating LGN. We developed a new method to elevate IOP by injection of cultured conjunctival cells into the anterior chamber to obstruct aqueous outflow. Histologically, cultured conjunctival cells successfully proliferated to occlude the angle, and IOP was elevated for 13 weeks after injection. Macroscopically, the size of the eye gradually expanded. Subsequent enlargement of optic nerve head cupping and atrophic damage of LGN projected from the OH eye were clearly observed by anterograde staining with cholera toxin B. We believe the ferret may be a promising OH model to investigate secondary degeneration of central nervous system including LGN
    corecore